
Architecture, Philosophy and Performance of JPIP: Internet Protocol 
Standard for JPEG2000 

David Taubmana and Robert Prandolinib 
aSchool of Electrical Engineering and Telecommunications, The University of New South Wales 

bDefence Science and Technology Organisation, Department of Defence, Australia 
 

ABSTRACT 
JPEG2000 is a family of technologies based on the image compression system defined in IS 15444-1.  Presently, the 
ISO/IEC Joint Technical Committee of Photographic Experts (JPEG) is developing an international standard for 
interactivity with JPEG2000 files, called JPIP; it will become Part 9 of the standard.  One of the main goals of JPIP is to 
exploit the multi-resolution and spatially random access properties of JPEG2000, to permit �smart dissemination� of the 
data for client-server based applications.  The purpose of this paper is to discuss the principles and philosophy of 
operation underlying the JPIP standard, to outline aspects of the architecture of JPIP systems, and to report on the 
performance of a prototype implementation. 

Keywords: JPEG2000, interactive imaging, internet protocols, image retrieval. 
 

1. INTRODUCTION 
The ISO/IEC Joint Technical Committee of Photographic Experts (JPEG) is currently developing an international 
standard for interactivity with JPEG2000 code-streams and files.  The work item is known as JPIP, and will become 
Part 9 of the JPEG2000 standard.  The purpose of JPIP is to standardize a means of interacting with JPEG2000 based 
data in an efficient and effective manner. 

The JPEG2000 image compression standard offers many desirable features in support of interactive access to large 
images. Chief amongst these are resolution scalability, progressive refinement (or quality scalability), spatial random 
access, and highly efficient compression.  However, the compression standard itself describes only a code-stream 
syntax, suitable for storing the compressed data in a file.  One way to interact remotely with the image content is for an 
intelligent browsing client to access appropriate byte ranges from the file.  Such an approach allows existing HTTP 
servers to be used as-is, exploiting the support offered by HTTP/1.1 for byte range accesses.  Indeed, such an approach 
was proposed by Depande and Zeng1.  However, this approach requires the inclusion of index tables which an 
intelligent client can read to determine the locations (byte ranges) of the relevant compressed data and header 
information.  JPIP standardizes the form of the index tables to be used for such purposes, as discussed in Section 5. 

While recognizing the usefulness of a byte ranging approach, the JPIP standard is primarily concerned with the 
description of a new protocol for interacting with JPEG2000 content.  With the JPIP protocol, a client does not directly 
access the compressed file.  Rather, it formulates requests using a simple descriptive syntax which identifies the current 
�focus window� of the client-side application.  The JPIP protocol is a more efficient service for interactive imaging, 
with fewer round-trip delays, and the opportunity for servers to efficiently manage their resources.  JPIP requests 
identify the client�s spatial region of interest, resolution and image components of interest, allowing the server to 
determine the most appropriate response elements and to optimally sequence them.  As we shall see, JPIP allows the 
server to adjust the sequence in which data is returned so as to minimize disk thrashing while optimizing the image 
quality available at the client.  A single JPIP request is sufficient to obtain an arbitrary region of an image, at a selected 
size/resolution, so that JPIP requests can be embedded as static targets within HTML pages.  For interactive 
applications, multiple JPIP requests can be issued and efficiently served within an interactive browsing session, 
allowing the server to avoid the delivery of redundant data.  The JPIP protocol has features which commend its use for 
collaborative remote image interaction, for providing services on unreliable transports (e.g., wireless transmission), for 
flexible and domain-specific delivery of meta data, and for applications which involve low data-rate networks. 

These are just some of the reasons behind the development of a specific JPIP protocol which requires JPIP-aware server 
and client utilities.  The present document focuses almost exclusively on the JPIP protocol, as opposed to byte ranging.  



Section 3 discusses the key philosophical and architectural principles behind JPIP.  These are tightly coupled to the 
JPEG2000 compression algorithm, which is briefly reviewed in Section 2.  Section 4 then provides a technical 
description of some of the key elements of the JPIP protocol.  Section 6 indicates how JPIP has been designed to meet 
the needs of a range of different application and transport environments, and then Section 7 presents experimental 
evidence for the efficiency, responsiveness and usability of one particular JPIP implementation. 

2. JPEG2000 CODE-STREAM ELEMENTS 
JPEG2000 is based on the Discrete Wavelet Transform (DWT), together with Embedded Block Coding with Optimized 
Truncation (EBCOT), as illustrated in Figure 1a.  D stages of DWT analysis, labeled d=1,2,�,D, decompose the image 
into 3D+1 subbands, labeled LHd, HLd, HHd and LLD.  Each subband is partitioned into rectangular blocks, known as 
�code-blocks,� each of which is independently coded into a finely embedded bit-stream.  Truncating the embedded bit-
stream associated with any given code-block has the effect of quantizing the samples in that block more coarsely.  Each 
block of each subband may be independently truncated to any desired length. 

By discarding code-blocks corresponding to the highest resolution detail subbands, and omitting the final stage of DWT 
synthesis, a half resolution image can be reconstructed from the remaining subbands.  Dropping the next lower 
resolution leaves a quarter resolution image, and so forth.  This property allows JPEG2000 content to be delivered in a 
manner which matches the user�s display resolution.  To provide for progressive refinement of image quality, 
JPEG2000 introduces a quality layer abstraction2. Each successive layer represents incremental contributions (possibly 
empty) from the embedded bit-streams of all code-blocks in the image.  These contributions may be adjusted so as to 
maximize the perceived image quality, as a function of the amount of data received at each layer boundary.  Moreover, 
the optimal layering is roughly independent of the resolution which is to be delivered. 

Spatial random access is possible, because each code-block is associated with a limited spatial region and is coded 
independently.  To facilitate this, JPEG2000 defines collections of spatially adjacent code-blocks, known as �precincts.�  
We say that a subband belongs to image resolution LLd if it contributes to the reconstruction of LLd, but not to LLd+1.  
Thus, resolution LLD contains only one subband, while all other resolutions LLd contain the three detail subbands 
LHd+1, HLd+1 and HHd+1.  Each precinct on LLd consists of code-blocks from the same spatial region, within the 
subbands which belong to image resolution LLd.  Figure 1b illustrates the relationship between precincts, resolutions 
and code-blocks.  Note that each code-block in the image belongs to exactly one precinct.  While the precincts may be 
interpreted as partitions of their respective image resolutions, DWT synthesis involves filters with finite support so that 
the reconstructed image regions which are affected by one precinct’s code-blocks will overlap with the reconstructed 
image regions which are affected by adjacent precincts’ code-blocks.  Conversely, the set of precincts which affect a 
given image region generally depends on both the precinct dimensions and the support of the DWT synthesis filters. 

Associated with each precinct is a corresponding data-stream, representing the embedded bit-streams from all code-

LL2

LH2 HH2

LL1

image LL0

HL1

LH1 HH1

HL2

an
al

ys
is

st
ag

e 
1

an
al

ys
is

st
ag

e 
2

sy
nt

he
si

s
st

ag
e 

1
sy

nt
he

si
s

st
ag

e 
2

details
for LL1

details
for LL0

  
LHd+1 HHd+1

HLd+1

Precinct on
resolution LLd

Code-block
LLd

 
a)       b)   

Figure 1.  Elements of the JPEG2000 standard: a) DWT and code-block partition; b) precincts. 



blocks in the precinct.  As indicated in Figure 2, this data-stream is organized into segments, with one segment for each 
of the L quality layers.  Each segment commences with a header, identifying the contribution made by each code-
block�s bit-stream to the corresponding quality layer.  This is followed by the block contributions themselves.  In a 
JPEG2000 code-stream, the segments are called �packets� and the packets from different precincts are interleaved 
following one of a number of predefined progression orders.  For the purposes of JPIP, it is convenient to refer to the 
entire precinct data-stream as a single entity, any leading prefix of which may be delivered by the server. 

3. ARCHITECTURAL PRINCIPLES OF THE JPIP PROTOCOL 
3.1. Client-Server Interaction 

Figure 3 illustrates the typical interaction envisaged by JPIP, between a client application and a remote server.  For the 
purpose of this discussion, we shall assume that the client application is a graphical user interface, driven by an 
interactive user, although other applications can certainly be envisaged.  We use the term �focus window� to refer to the 
user�s current spatial region, resolution and image components of interest.  This might only be a subset of the actual 
displayed image region, depending upon the application and user preferences.  The window may also include other 
attributes, such as a maximum number of quality layers in which the user is interested.  Typically, the interactive user 
pans (changes the spatial region) or zooms (changes the resolution or scale) the focus window. 

The client contains a cache of the data previously transmitted by the server, organized into data-bins which are further 
explained in Section 3.2. The server may optionally maintain a model of the client�s cache to avoid retransmission of 
data which the client already has; this is discussed further in Section 3.3.  An important aspect of Figure 3 is the 
separation of the image decompression/rendering process from client-server communication.  The inherent scalability of 
JPEG2000 means that an image can be meaningfully rendered from almost any subset of the original compressed data.  
This allows the focus window to be rendered directly from the cache before waiting for new data to arrive.  In fact, it is 
often helpful to render a larger region of the image than just the focus window, to provide an interactive user with 
navigation context.  As the client receives more data from the server, the cache contents grow and rendering is repeated 
to progressively refine the image quality both within and around the focus window. 

The actual communication between client and server consists of request/response pairs.  The request identifies the focus 
window via its geometric attributes, rather than low-level JPEG2000 constructs.  This has several benefits: 1) JPIP 
requests can be compact and intuitive, facilitating their inclusion as URL�s in HTML pages; 2) JPIP requests can be 
used to extract an appropriate image region from a non-JPEG2000 file (e.g. a server may offer a transcoding service); 3) 
the focus window expresses an end-user�s ultimate interests, rather than a client�s interpretation of those interests in 
terms of JPEG2000 elements allowing the server to determine how best to respond to the request. 

The JPIP protocol is designed to be transport-neutral.  A primary objective is that JPIP communication can be realized 
using HTTP/1.1 as the underlying transport, without interfering with existing HTTP infrastructure.  However, JPIP can 

HLd
block bits

HDR
0

Packet header + layer 0 increments

Compressed precinct data-stream for a single precinct in resolution LLd-1

LHd
block bits

HHd
block bits

HDR
1

HLd
block bits

HDR
L-1

Packet header + layer L-1 increments

LHd
block bits

HHd
block bits

 
Figure 2.  Precinct data-stream. 

Cache Model

imagery
window requestJPIP Server JPIP Client

Target
(file or code-stream) Decompress/render

Application
JPIP stream + response headers

Client Cache

window

window

status

JPEG2000
data-bins  

Figure 3.  Client-server interaction in JPIP. 



operate even more efficiently over other transports (see Section 6), and is well adapted to both reliable (e.g., TCP) and 
unreliable (e.g., UDP) transport environments. 

3.2. Data-bins for All 

JPIP defines a means for partitioning the semantic information within any JPEG2000 file into a collection of so-called 
�data-bins.�  While the protocol allows for out-of-order communication of any data-bin�s contents to support unreliable 
transports, data-bins are typically transmitted and cached in linear fashion.  For this reason, data-bins are designed to 
correspond with image objects that have a natural linear organization. 

JPIP defines two partitioning schemes for JPEG2000 code-streams, based on either precincts or tiles as the predominant 
data-bins.  In both cases, the code-stream�s main header is assigned its own data-bin.  In the case of precincts, each tile 
header is assigned its own data-bin and each precinct is assigned a data-bin which contains the precinct data-stream 
shown in Figure 2.  In the case of tiles, each tile is assigned a single data-bin which represents the stream of data formed 
by concatenating all tile-parts of the tile, including all their headers.  The tile-based approach offers server simplicity at 
the expense of reduced flexibility in the order in which data can be transmitted.  The tile-based approach also relies 
exclusively on tiles to provide spatial accessibility, while the precinct approach offers spatial accessibility even if the 
entire image is compressed as a single tile.  For the remainder of this paper, we focus exclusively on the more flexible 
precinct-based data-bins.  For simplicity, we also ignore the possibility that the image may be tiled.  For efficient 
interactive delivery, precincts should be as small as possible, containing at most 3 code-blocks, one from each subband.  
If necessary, the server can easily transcode the original code-stream to one with these minimal-sized precincts but 
using the same code-blocks as before; this process requires relatively little processing and is entirely lossless. 

JPIP adopts a consistent approach to both image code-streams and meta data.  JPEG2000 defines a family of file 
formats which may be used to encapsulate code-streams, all of which are based on a consistent �box� structure.  
Existing members of this family are JP2 (simple wrapper for a single JPEG2000 code-stream, defining color space and 
other rendering properties); JPX (extended version of JP2 with support for multiple code-streams, advanced color 
spaces, animation, etc.); MJ2 (motion file format, with timing information and one code-stream per video frame); and 
JPM (compound document file format).  We use the term �J2 box� for the boxes found in these various files.  A J2 box 
may be a super-box if its contents consist of a sequence of other J2 boxes (its sub-boxes).  For the purpose of this 
document, the term meta data is used to refer to any J2 box (at the risk of some confusion, since code-streams are 
themselves embedded either by containment or by reference within J2 boxes). 

Since all data communicated by JPIP must be in data-bins, a natural strategy would be to associate each J2 box with a 
separate data-bin.  However, to preserve the interpretation of meta data in JPEG2000 family files, it is necessary to 
maintain the containment relationship of sub-boxes within their super-boxes, the relative ordering of J2 boxes, and even 
the absolute locations of J2 boxes within the original file.  Absolute locations are required since certain J2 boxes can 
reference others through file offsets.  To map the strongly file-oriented J2 box concepts into data-bins, JPIP adopts a 
simple yet elegant strategy.  Conceptually the entire file is mapped to a root meta data-bin 0.  Any top-level J2 box in a 
meta data-bin can be replaced by a special JPIP-defined �placeholder� box, which records the original box header 
details, but points to another meta data-bin for the contents of the box.  If that box was a super-box, its contents are J2 
boxes, any of which may similarly be replaced by a placeholder. 

Placeholders allow J2 boxes to be partitioned into data-bins in any of a number of ways, with different implications for 
transport efficiency.  The server makes the decision as to how data-bins should be constructed and served to the client.  
This allows for naïve servers which can only support simple files effectively, through to highly intelligent application 
and content aware servers.  JPIP extends the placeholder concept by allowing any original J2 box to be replaced by an 
alternate �stream equivalent� box.  Stream equivalent boxes may not have existed in the original file, but are better 
adapted for interactive delivery.  This mechanism also allows the server to conceal references to other files which may 
be embedded within the meta data of the main file.  Finally, placeholders may be used to indicate that a code-stream 
which was embedded in a J2 box is now available through the equivalent JPIP code-stream data-bins (precinct and 
header data-bins mentioned above).  In the case of MJ2 files, the chunk-offset box (a large table of pointers used to 
index frames) may be replaced by a placeholder which efficiently identifies all code-stream data-bins associated with 
the frames in an entire video track. These facilities allow client rendering applications to work with cached JPEG2000 
family files, exactly as though they were local files, in regard to both image content and meta data, while allowing file-
centric concepts to be replaced by streaming-centric concepts where appropriate. 



3.3. Caching and Sessions 

As suggested by Figure 3, the client typically caches the data-bin contents transferred by the server in response to 
previous requests.  JPIP identifies each request as either stateless or stateful.  Stateful requests are made in the context 
of a communication session, whose state is maintained by the server.  Although sessions require the server to allocate 
some persistent resources, sessions can significantly reduce its computational and I/O load.  In the worst case, a 
stateless server may need to open the image, interpreting, extracting and reordering its contents each time a request 
arrives.  On the other hand, a stateful server can generally minimize its interaction with the original image file, relying 
on information accumulated while processing previous requests. 

Perhaps even more significantly, a stateful server may keep track of the number of bytes from each data-bin which it 
has already sent to the client.  In this way, only the missing information need be sent in response to future requests.  We 
refer to this as �cache modeling.�  For stateless requests, the client should explicitly identify the amount of data from 
each relevant data-bins which it already has in its cache, in each separate request.  This tends to make stateless requests 
much larger.  On the other hand, if a client cannot cache all information it has received from the server, stateful requests 
must explicitly identify the elements which have previously been received, but have since discarded from the cache.  
This is because JPIP invites all stateful servers to assume that the client caches all received data, unless otherwise 
notified.  Cache model manipulation is discussed further in Section 4.4. 

Clients may re-use their cache contents both within a session and between sessions.  In fact, a stateless request is 
essentially just a session which terminates after the request has been serviced; it is obvious that clients must be able to 
re-use their cache contents between stateless requests.  Moreover, clients may share their cache contents with others.  
For these reasons, JPIP servers must agree to maintain the integrity of each data-bin�s contents across multiple requests, 
sessions and clients.  To facilitate this, JPIP allows servers to assign a unique target-id to each target file or code-
stream.  If the contents of any data-bin associated with the target change (e.g., due to image editing), a new target-id 
must be issued to alert clients to the fact that their previous cache contents should no longer be considered valid. 

3.4. Server Privileges 

JPIP deliberately offers considerable flexibility in the way servers may respond to client requests.  The server is free to 
transcode the original code-stream to one with smaller precincts, or one without any bulky pointer marker segments 
(since these are useful only when directly accessing the file), so long as it always presents the material in the same way 
(consistency of JPIP data-bins) for the same target-id.  As noted in Section 3.2, the server is free to partition meta data 
(J2 boxes) in the original file into meta data-bins, following whatever strategy it deems best. Again, it must ensure that 
the target file is always presented in the same way when associated with a given target-id. 

The set of code-stream data-bins which are relevant to any particular request is a deterministic function of the request 
parameters and the data-bin organization, which the server has selected to associate with the target file.  However, the 
server has the flexibility to deliver the contents of these data-bins incrementally, following any order it chooses.  For 
instance, some servers may employ content- and request-dependent rate-distortion optimization strategies to maximize 
the end-user�s perceived image quality at each point in the transmission (explored in Section 7).  In a distributed 
environment, the client�s immediate server may itself have part of the image content, in which case it may choose to 
send this information first, so as to avoid delays while it attempts to recover further information from other servers 
(explored in Section 6). 

Servers have potentially even more freedom in how they deliver meta data in response to a request.  While JPIP defines 
request parameters that can be used to specifically identify meta data of interest, the client need not be explicit; it can 
ask the server to send any meta data which it believes to be relevant to the request�s focus window.  Consider, for 
example, a map service in which imagery is overlaid with scale sensitive meta data such as the names of regions, streets 
and buildings.  The server may be able to associate meta data with a spatial region and prioritize the meta data 
according to the focus window�s resolution.  This can improve the user�s interactive browsing experience by respecting 
the scale dependencies of map feature annotations. 

Evidently, JPIP requests are not �idempotent,� meaning that the response to a request is not necessarily the same each 
time the request is posed.  In fact, unless the client explicitly indicates otherwise, JPIP servers are generally encouraged 
to interrupt the response to a current request when a new request arrives, since this would typically indicate that an 



interactive user�s interests have changed.  Exactly when the server chooses to do this is an implementation 
consideration.  To minimize context-switching overhead, servers might choose to consider new requests only 
periodically, since client-side interaction can generate numerous requests as the user navigates through the image. 

An important JPIP principle is that servers should be permitted to modify client requests.  To understand why this is 
important, consider the problems which could be faced by a server trying to deliver progressively improving image 
quality over a very large focus window.  If the precinct data-stream was organized in quality progressive fashion 
already on the server�s disk, the server would incur severe disk thrashing as it attempted to serve small windows, since 
each increment in quality would require data from a different location on the disk.  For this reason, each precinct data-
stream is likely to have been stored contiguously within the original file.  But then serving a large focus window with 
progressive quality refinement requires that either the server reads the relevant precinct data-streams repeatedly, or else 
it must pre-load them into memory.  The first solution incurs excessive disk I/O, while the latter incurs excessive 
memory consumption.  In an interactive setting it is practical for the server to explicitly reduce the resolution, region 
size or number of components in a large requested focus window.  Interactive users can then readily learn how to best 
exploit the server�s resources.  In general, servers are permitted to reduce the scope of the requested focus window for 
either of the following reasons: 1) the request cannot be satisfied in quality progressive fashion without committing 
excessive resources; or 2) the requested window parameters do not correspond to a valid resolution, spatial region, 
components, etc.  In either event, all modified request parameters must be signaled back to the client via response 
headers. 

4. TECHNICAL DESCRIPTION 
4.1. JPIP Streams and Messages 

As mentioned in Section 3.2, the entire contents of a JPEG2000 file are partitioned into data-bins, including code-
stream and meta data.  To describe the server�s response data, JPIP defines a new media type which we shall call a 
�JPIP stream.�  There are in fact two different media types, with tentative MIME types of �image/jpp-stream� and 
�image/jpt-stream.�  The former is used where the code-stream has been partitioned into data-bins based on precincts, 
while the latter is used for tile-oriented data-bins.  In this paper, we shall collectively refer to these as JPIP streams. 

A JPIP stream consists of a sequence of JPIP messages, each of which contains a range of bytes from the contents of a 
single data-bin.  Each message has its own byte-aligned header which compactly identifies the data-bin class (meta 
data, code-stream main header, tile header, precinct or tile), a unique identifier for the data-bin within its class and the 
location and length of the range of bytes which may be found in the message body.  Message headers may range from 3 
bytes to more than 10 bytes in length, with shorter headers for more common or smaller messages.  Transport efficiency 
is considered further in Section 7. 

Since each message is fully self-contained, individual messages may be lost without necessarily affecting the usefulness 
of other messages in the stream.  If the underlying transport protocol is unreliable (e.g., UDP), individual transport 
packets may be lost or misordered without adversely affecting the data contained in other packets, so long as each 
transport packet contains a whole number of JPIP messages.  This can be achieved regardless of transport packet size 
constraints, since each message represents an arbitrary byte range from its data-bin. 

It is worth stressing the fact that JPIP streams are image media in their own right.  The stream of messages sent by the 
server in response to a JPIP request may be stored in a file and meaningfully opened as an image, without any reference 
to the request which generated the stream, or other server response headers.  As such, a JPIP stream is essentially an 
alternate embodiment of the JPEG2000 compressed data.  This alternate embodiment, however, has several desirable 
properties which are not possessed by JPEG2000 code-streams or files.  JPIP streams can always be concatenated to 
form a new stream.  JPIP stream messages may appear in any order and may contain overlapping byte ranges from the 
same data-bin.  The state of a client�s cache can always be represented as a JPIP stream and exchanged with other 
clients by any suitable means. 

4.2. Basic Window Requests and Responses 

JPIP requests consist of a sequence of �name=value� pairs.  When carried by a text-oriented transport protocol such as 
HTTP, the name and value components of each request field are ASCII strings and request fields are separated by the 



�&� character.  This convention allows the entire JPIP request to be embedded in the query component (after the �?� 
character) of a conventional HTTP GET request, and hence captured by a URL which might be embedded in an HTML 
page.  We note, however, that alternate representations may be preferred for other transports. 

A basic JPIP request should contain some means for identifying the target file, together with the focus window.  As an 
example, the following request is for a target file known to the server as �images/huge.jp2�, at a resolution whose full 
image size is 12000x8000 (width by height), within a region of size 600x400, at an offset of 5000 pixels from the left 
and 6000 pixels from the top of the requested image resolution. 

target=images/huge.jp2&fsiz=12000,8000&rsiz=600,400&roff=5000,6000 

This request might be embedded in a URL such as 
http://www.unsw.edu.au/bin/jpip.cgi?target=images/huge.jp2&fsiz=12000,8000&rsiz=600,4
00&roff=5000,6000 

The target might be conveyed by other means, outside the scope of the JPIP protocol itself, as in the following example 
where the target file is identified by the resource component of the URL: 

http://www.unsw.edu.au/images/huge.jp2&fsiz=12000,8000&rsiz=600,400&roff=5000,6000 

The target may also be a byte range of a file which is known to include JPEG2000 content (e.g., a PDF file).  Finally, 
the target might be implicitly identified by any request which is issued within a stateful session (see Section 4.3). 

Recall from Section 2 that the DWT used in JPEG2000 provides only D+1 different image resolutions, whose 
dimensions WdxHd are smaller than those of the original image by 2d, where 0 ≤ d ≤ D and D is the number of DWT 
levels.  If the dimensions supplied by the fsiz (full size) query field are not identical to those of one of these image 
resolutions, the JPIP server is expected to round to the nearest available resolution, WdxHd.  The rounding direction 
may optionally be made explicit using a request field of the form �fsiz=12000,8000,round-up� or 
�fsiz=12000,8000,round-down� or �fsiz=12000,8000,closest�.  Wherever this happens, the region size and 
offset parameters supplied by the rsiz and roff query fields must be scaled so as to preserve their relationship to the 
fsiz parameters. 

In view of the above discussion, it is evident that the server may sometimes need to modify request parameters.  In 
Section 3.4 we provided other examples of situations in which the server is at liberty to modify request parameters.  As 
noted there, an important feature of JPIP is the freedom given to servers to respond to a request after first modifying the 
parameters.  In recognition of this feature, JPIP defines syntax for servers to signal the changes which have been made 
together with their response.  In fact, JPIP requires that servers explicitly signal all changes to request parameters via 
�response headers.�  If HTTP is used as the transport, JPIP response headers should be included along with the other 
HTTP response headers prior to the message body, using header names which are constructed by prepending the name 
of the modified request field with the string �JPIP-�.  The example below illustrates how the server might respond to 
an HTTP GET request for an image resolution which differs from the nearest available one. 

← GET /images/huge.jp2&fsiz=12000,8000,round-down&=600,400&roff=5000,6000 HTTP/1.1 
← Host: dst-m 

→ HTTP/1.1 200 OK 
→ JPIP-fsiz: 6000,8000 
→ JPIP-rsiz: 300,200 
→ JPIP-roff: 2500,3000 
→ Content-type: image/jpp-stream 
� (rest of the response) 

Following any response headers, the server sends a sequence of JPIP messages.  Thus, unless no response data is 
required, the JPIP server�s response always includes a valid JPIP stream.  As noted in Section 3.4, the server may 
choose to truncate this stream at any desired point if a new request arrives, allowing it to process the new request in a 
timely manner.  However, each response must be terminated by a special EOR (End of Response) message, which 
includes a code identifying the reason for termination.  Using the EOR message, a client may readily determine whether 
the request has been terminated because all relevant data has been received, or for another reason such as the arrival of a 
subsequent request.  Although the EOR message uses similar constructs to JPIP stream messages, it is not actually part 
of the JPIP stream. 



Although JPIP streams are the most natural response data type for JPIP client/server applications, it is also possible for 
clients to request that the response be converted into a standalone image such as a JPEG image or a standalone 
JPEG2000 image.  This is done by including a type request field, as in 

target=huge.jp2&fsiz=1280,1024&rsiz=300,200&roff=100,80&type=jpeg,jp2 

which means that the client is prepared to receive the requested region as a complete image, having a file format whose 
MIME type is one of �image/jpeg� or �image/jp2�.  Of course, servers might not offer such a transcoding functionality.  
Also, many JPIP concepts and request fields are meaningful only when the response is a JPIP stream. 

4.3. Channels and Sessions 

As noted already, requests may be either stateless or stateful.  A stateful request is issued in the context of a session, 
which the server manages on the client�s behalf.  It is actually possible for the client to open multiple channels to a 
single session, allowing it to issue multiple requests concurrently.  The JPIP streams returned in response to requests on 
each channel may be combined in any order to form the evolving response.  This allows sophisticated clients to pose 
rich requests, consisting of multiple focus windows.  Each channel has a server-assigned channel-id string, which must 
be included in any session-oriented request via the cid request field.  The channel-id implicitly identifies the session, as 
well as other invariants of the session such as the target file and previously signaled client preferences.  

Channels and sessions are established with the aid of the cnew request field, and the server�s JPIP-cnew response 
header, using a boot-strapping procedure in which an initial stateless request is used to obtain the first channel of a new 
session.  To illustrate the procedure, consider the following example. 

← target=image.jp2&fsiz=4096,4096&rsiz=512,512&roff=1300,1700&cnew=http 

→ JPIP-cnew: cid=01ab7f,transport=http,host=107.41.39.1  
� (rest of the response to original request, delivered as though request had been issued with cid=01ab7f) 

← cid=01ab7f&fsiz=4096,4096&rsiz=512,512&roff=1800,1900 

� (response to request) 
← cid=01ab7f&fsiz=4096,4096&rsiz=512,512&roff=2100,2000&cnew=http 

→ JPIP-cnew: cid=3c0081,transport=http 
� (response to request) 

There are several points to observe from this example.  Firstly, the cnew request field identifies the transport protocol to 
be used during communication with that channel.  In the example, this is HTTP, but JPIP defines other transports and 
allows for future adaptation to just about any underlying transport mechanism.  In fact, each channel can use a different 
transport.  Secondly, the server�s response identifies the new channel-id, the transport to be used, and potentially other 
transport-specific information.  In this case, the JPIP-cnew response header identifies the IP address of the machine 
which is hosting the session.  This might be different from the host which responded to the initial stateless request if 
redirection is required to find a server willing to host the session.  Finally, observe that new channels may be opened to 
an existing session by including a cnew field within a request which is already associated with that session. 

JPIP provides a cclose request field to be used when issuing the final request within any given channel.  This provides 
a clean mechanism for the server to efficiently recover the channel�s resources.  The use of cclose does not inherently 
imply that the underlying transport protocol�s connection should be closed.  For example, if HTTP/1.1 is used as the 
transport, a persistent TCP connection will generally remain open until a �connection: close� header is sent by the 
client.  This allows further requests to be issued without re-establishing the TCP connection.  In fact, it is quite legal to 
issue requests with different JPIP channel-ids on the same transport connection. 



4.4. Cache Management Instructions 

Where requests are issued within the context of a stateful session, it is generally assumed that the server will maintain a 
model of the client�s cache contents, so that only new data need actually be sent in response to any request.  Under 
some circumstances, however, the client may need or wish to explicitly modify the server�s cache model.  If the client 
has cached data from a previous browsing session or from previous stateless requests, it may wish to add the 
corresponding elements to the server�s cache model so as to avoid redundant transmission.  On the other hand, if the 
client has limited cache memory, it may need to delete some elements from its cache; these elements should also be 
removed from the server�s cache model so that they can be re-transmitted if the client requires them at a later point. 

JPIP�s model request field may be used to explicitly add or subtract elements from the server�s cache model.  In 
particular, the client may request that the server add either the entire contents of any data-bin, or a leading prefix of any 
data-bin to its cache model.  The client may also request that the server remove either the entire contents, or all but a 
leading prefix of any data-bin from its model.  For example, the following request field asks the server to add the main 
and tile headers, meta data-bin 0, and the first 20 bytes of precinct data-bin 0 to its cache model, and to remove precinct 
data-bin 1001 from its cache model. 

model=Hm,H*,M0,P0:20,-P1001 

At first glance, it may appear as though the client could place unreasonable demands on the server�s memory resources 
by expecting to directly manipulate the server�s internal cache model.  However, JPIP servers are not obliged to 
maintain a complete model of the client�s cache.  For example, the server may arbitrarily discard elements from its 
cache model if it is running low on memory.  In the extreme case, a server might choose not to model anything, in 
which case it can entirely disregard all cache model statements.  Of course, this will generally result in less efficient 
communication, since the client may receive copies of data which it already has in its cache, but the protocol still 
works.  It is also worth noting that there is no need for the client to inform the server of the state of its cache, except in 
relation to those data-bins which are actually relevant to the requested focus window. 

For stateless requests, a typical client will identify the contents of its cache within each request.  Conceptually, each 
stateless request initiates a new session on the server, whose cache model is initially empty.  The model is manipulated 
by any cache management instructions in the request, after which the focus window is processed and appropriate non-
redundant return-data is delivered.  The session is then destroyed at the end of the request.  JPIP defines a special syntax 
for efficiently performing the cache management interactions which are relevant to stateless requests. 

4.5. Other Features 

Beyond the basic features mentioned above, the JPIP request syntax provides many additional features.  Each request 
may be qualified with a byte limit, identifying the maximum number of JPIP message body bytes to be returned in 
response to the request.  This allows clients to maintain responsiveness by preventing the server from �flooding� 
network buffers in response to an individual request.  The number of code-stream quality layers may be similarly 
restricted, and an abstract image quality limit may also be imposed.  Although the default behavior is for new requests 
to pre-empt the server�s response to a current request, a new request may explicitly specify that the server should wait 
until the previous response is completed before processing the new request. 

In addition to explicit focus windows, JPIP allows the client to request a specific region of interest whose details are 
only known to the server or are identified within the target file itself.  Where the target file involves multiple code-
streams, the request may explicitly identify one or more code-streams which are of interest.  Intelligent clients may 
explicitly restrict or augment the types of meta-data which the server is being asked to return in response to the request.  
Clients may also signal general preferences, which intelligent servers can use to customize their responses. 

5. BYTE RANGING 
HTTP/1.1 allows clients to make byte-range requests into a target file.  Aspects of the functionality of the JPIP system 
described above can be achieved using byte-range requests in conjunction with JPEG2000 files.  While JPEG2000 
code-streams may optionally include pointer information which could be used to formulate appropriate byte-range 
requests, the pointer information itself may be very large and is not amenable to random access.  To facilitate efficient 
access, based on byte-range requests, the JPIP standard describes the form of a new set of index tables, which may be 



included in JP2 family files.  Two important points to be made initial are: 1) the motivation for defining index tables in 
JPEG2000 Part 9 is to permit early implementation of some of the JPIP functionality on current internet infrastructure; 
and 2) using byte-range requests to achieve JPIP functionality is not a JPIP protocol � byte-range requests are already 
part of HTTP.  JPIP index tables provide clients with a tree-structured, randomly accessible catalog of the byte-ranges 
associated with header information, codestreams, tile-parts, precinct packets and meta data boxes.  After using the index 
tables to identify and access important header information, a client can determine what is needed to satisfy the needs of 
the client-side application, making further requests for the relevant index information and ultimately the relevant data.  
Byte-range requests require no special JPIP image server, and are compatible with the caching infrastructure provided 
by HTTP/1.1. 

There are two significant disadvantages of the byte-ranging approach.  First, the client must make a number of round-
trips to selectively retrieve both index information and image data.  Secondly, data transfers will usually be sub-optimal 
in the sense of improving perceived image quality as quickly as possible.  One reason for this is that clients typically do 
not have sufficient information about the contribution of each byte-range towards image quality (or information quality, 
in the case of meta data).  In general, only the server can balance the information priorities of the client with other 
priorities such as access cost, transmission cost, and server load considerations.  As noted previously, the server might 
not have local access to the entire image, which is something the client cannot generally know.  In contrast to byte-
ranging, the JPIP protocol allows servers to exploit their knowledge of the image quality implications for data which 
they serve.  It even allows servers to generate the compressed imagery dynamically, in response to client requests. 

6. DEPLOYMENT 
So far this paper has alluded to underlying assumptions on the requirements of typical JPIP systems, and the philosophy 
of how they would be met.  The purpose of this section is to review these issues by describing common JPIP 
deployments.  At the most basic level, an everyday use-case would be a user with some GUI application, navigating an 
arbitrary large (e.g. geospatial) image over a network.  Some present day paradigms would see the entire imagery 
downloaded to the client before it was available for exploitation, but this is not practicable on the internet.  An 
alternative approach is for the server to create and send a �stand-alone� image (e.g. a JPEG image) based on the client�s 
focus window request.  This is commonly called �screen-scraping� and indeed it is envisaged that JPIP image servers 
may offer a transcoding service (e.g. via �type=jpeg� requests) as a means of permitting backward compatibility for 
non-JPEG2000 capable clients.  However, screen-scraping is not smart dissemination as each stand-alone response has 
limited reuse potential.  Since JPEG2000 has a number of scalable dimensions with randomly accessible data, JPIP is 
designed to serve this data.  Smart dissemination is achieved through the client caching the received JPIP stream, the 
server keeping a cache model (assumes that all JPIP stream data is cached unless otherwise signaled), and the server 
only transmitting the difference between the set of data required for the current focus window request, less the 
intersection of this set with what is in the cache model.  

A typical model for interactive JPIP communication has already been described in Section 3.1, in connection with 
Figure 3.  An initial request would typically identify a low resolution focus window, providing the interactive user with 
sufficient detail to commence meaningful navigation within the image.  Responding to the demands of an interactive 
user, the client may generate requests at an arbitrary rate.  A well-behaved server would process these requests in a 
manner that provides favorable responsiveness.  If the server takes a period of time to set-up for a JPIP response and to 
transmit some �meaningful� amount of data, it makes no sense to respond to requests at a faster rate.  What defines the 
amount of data that would be �meaningful� is application specific, but the server should only respond to the most recent 
request sampled from the request stream at no more than this rate.  A formal response must be issued to each request, 
but the response can be empty if the server has a more recent request in the queue.  Thus the server will often provide 
empty responses to requests.  Of course, this does not prevent the application from rendering the relevant imagery using 
the contents of the client-side cache.  This behaviour implies that client requests are pre-emptable, meaning they are not 
guaranteed to result in complete responses.  In fact, there is no way to issue a JPIP request which is not pre-emptable.  It 
is possible, however, to issue a request which will not pre-empt a previous request; this is done by including a 
�wait=yes� field.  Even though requests are pre-emptable, the client can know whether it has all image data relevant 
to a particular request, based on the reason code included in the EOR message which the server appends to each 
response. 



Pre-emptable requests are an example of a core JPIP philosophy to couple client-server interaction as loosely as 
possible.  Since the client could change the request parameters and/or cache model at any time (via a new request), tight 
server-client synchronization is problematic. Another example where tight coupling is undesirable is for unreliable 
transports, where network-data packets (as opposed to JPEG2000 packets) could be received out of order, delayed, or 
not arrive at all.  Such environments are common in wireless networks, particularly in military wireless networks.  The 
recommended practice for military applications is to utilize UDP as the transport3.  Since JPIP imagery data-bins 
correspond to embedded bit-streams, each contiguous prefix can be decoded to yield image quality improvements, 
regardless of what other data may have been delayed or lost in the network.  For unreliable transports, relatively little 
hand-shaking is required to manage the integrity of the server�s cache model.  In particular, it is generally sufficient for 
the server to know which network packets might have been lost in transit.  If the client intends to explicitly manipulate 
the server�s cache model, some additional signalling is required to ensure proper ordering of requests at the server. 

Interactive applications are generally expected to remain responsive to changes in the client�s interests.  Pre-emptive 
handling of client requests goes part way to maintaining responsiveness, but responsiveness can also be hindered by 
intermediate buffering of server response data within the network. If neither the client nor the server takes steps to 
implement flow-control management, the server�s response to a previous request may be queued ahead of a slow link 
and block responses to future requests from arriving in a timely manner.  Section 7.2 compares the impact of client-
based flow-control and server-based flow control.  When using HTTP as the transport, client-based flow control is the 
only practical option, requiring that the client explicitly limit the amount of data which the server can return in response 
to a request. Using a different transport defined by the JPIP standard, however, allows server-based flow control which 
results in better utilization of the channel.  Server-based flow control is another example of weak coupling between 
client and server, since the way in which a response is answered is not determined exclusively by the client. 

An excellent example of the advantages potentially offered by weakly coupling the server�s response with the client�s 
request is a system of cascading JPIP servers, performing the functions of network proxies and caches.  Consider a 
number of users connected to a local JPIP server that initially holds no imagery data.  The local JPIP server acts as a 
proxy for a remote server.  The local server simultaneously delivers JPIP requests to the remote server and answers JPIP 
requests from its clients, caching JPIP stream responses from the remote server and using its cache to answer and 
optimally sequence JPIP stream responses to the client.  The local server does not need to download the entire image in 
order to serve clients.  Note that the JPIP proxy server�s cache would be persistent between sessions. Then, if a second 
client interrogates the same imagery, the local JPIP server can respond out of its own cache to the extent that the second 
client�s requests overlap those posed previously by the first client.  Meanwhile, the local proxy server interrogates the 
remote server to recover data which is still missing.  In this way, the order in which data is delivered in response to 
client requests may be highly dependent on the distributed service environment, and the way in which it has been used 
by other clients. 

To demonstrate the flexibility of the JPIP system further, notice that the remote server could be a simple file server with 
no JPIP capabilities.  In this case, the local JPIP proxy server would use JPIP index tables to issue byte-range requests 
to the remote server, while providing an efficient communication with the local client via the JPIP protocol.  Such an 
architecture has much to recommend it.  High level focus window requests received by the local server via the JPIP 
protocol enable it to predict and pre-fetch the data which is most likely to be required from the remote server, rather 
than simply passing on byte-range requests from the local client.  On the other hand, interacting with the remote server 
via byte-range requests allows existing caching infrastructure developed for HTTP to be fully utilized in the wide area 
network. 

JPIP�s loose coupling philosophy for imagery is also applied to meta data.  As a general rule, it is easier for the server to 
understand the potentially large and complex catalogue of meta data in a JPEG2000 file.  The server is at liberty to 
compress the catalogue using placeholders and equivalence redirections.  This does not restrict the client�s ability to 
access meta data; rather, it should actually reduce the average number of request-response round-trips required.  JPIP 
provides interactivity with motion JPEG2000 files (MJ2) and compound documents (JPM), and it is intended to be 
compatible with new parts of the JPEG2000 standard which are being develoed to support scientific 3-D imagery 
(JP3D), wireless applications (JPWL) and security (JPSEC).  We envisage future intelligent JPIP servers which will 
utilize imagery importance maps4, 5 to prioritize data for JPIP streams in a scalable fashion.  These are also likely to 
have applications in wireless video.  A JPIP service to memory challenged clients is achievable using the cache 
management signaling in JPIP.  While this would be somewhere between full caching and screen-scraping, depending 



on the amount of memory available, it is another example of the flexibility offered by JPIP.  With these few examples, 
we hope to have demonstrated that JPIP is capable of meeting the needs of a broad range of applications for interactive 
interrogation of JPEG2000 based data. 

10 20 30 40 60 80 100 160

40 dB

38 dB

36 dB

34 dB

32 dB

30 dB

28 dB

26 dB

24 dB

22 dB

40 dB

38 dB

36 dB

34 dB

32 dB

30 dB

28 dB

26 dB

24 dB

22 dB
10 20 30 40 50 60 70 80

kBytes received kBytes received

PSNR in
window

PSNR in
window

128x128 til
es

untile
d; R

-D optim
al

seq
uencin

g

untiled; layer-by-layer

sequencing

128x128 tile
s; R

-D optim
al s

equencin
g

untile
d; la

yer-b
y-lay

er

seq
uencin

g

untile
d; R

-D optim
al

seq
uencin

g

 
             a)       b) 

Figure 4.  Quality progression while browsing a 256x256 region from a full resolution 2944x1966 image, using various service 
policies: a) region aligned at 1280x1024; b) region aligned at 1325x1063. 

7. PERFORMANCE 
7.1. Spatial Access Efficiency and the Benefits of Server-Driven Information Sequencing 

In Section 2, we pointed out that the reconstructed image region which is affected by any given precinct overlaps with 
the reconstructed image region which is affected by neighboring precincts.  This means that in order to fully reconstruct 
a given region, it is necessary for the server to deliver data for more precincts than one might at first expect.  Moreover, 
if the precinct dimensions are the same at every resolution (typically 64x64 or 32x32 in our case), the precincts from 
lower resolutions will have a much larger region of influence within the reconstructed image than those from higher 
resolutions*.  Again, this means that the precinct data which the server must deliver to accommodate a small spatial 
region of interest may actually represent a significantly larger region.  It is natural, then, to ask how efficient the spatial 
random access offered by JPIP actually is. 

Figure 4 plots the received image quality (PSNR) within a 256x256 focus window, as a function of the total number of 
bytes actually transmitted by the server in response to a request for that focus window.  Three different service 
strategies are considered, with two different locations for the focus window.  The lower curve in each plot corresponds 
to the delivery of precinct data in quality progressive fashion, following the quality layers in the original code-stream.  
The second curve is similar except that precinct data-bin contributions are optimally sequenced at the server so as to 
maximize the received image quality at each point in the progression. The server�s rate-distortion optimization 
algorithm takes into account the degree to which each precinct contributes to the focus window, as well as operational 
rate-distortion information collected during compression.  Details of the optimization algorithm are provided in6. 
Evidently, server-driven information sequencing has the potential to dramatically improve the transport efficiency. 

The upper curve in each plot corresponds to the JPIP delivery of an image which has first been decomposed into 
independent tiles of size 128x128, each of which has been independently compressed.  When the tiles align perfectly 
with the requested focus window, as they do in Figure 4a, no redundant data need be transmitted at all.  The 
performance in this case is indicative of that which could be achieved if the requested focus window were extracted 
from the image and independently compressed and delivered to the receiver.  Thus, the difference between the upper 

                                                           
* It is possible to work with precincts and hence code-blocks whose dimensions decrease from resolution to resolution 
so as to maintain a roughly constant region of influence in the original image, but this seriously compromises 
compression efficiency, especially when accessing the image at lower resolution. 



and middle curves in Figure 4a is indicative of the �random access cost� associated with serving a small spatial region 
from an image which has been compressed without tiling.  This cost reduces as the focus window increases in size. 

 
Figure 5.  Image recovered after receiving all data for the 256x256 focus window identified by the box: a) where the image was 

untiled; b) where the image was partitioned into 128x128 tiles. 
 

2 3 4 5 6 8 10 16

34 dB

32 dB

30 dB

28 dB

26 dB

24 dB

22 dB

20 dB

42 dB
40 dB
38 dB
36 dB
34 dB
32 dB
30 dB
28 dB
26 dB
24 dB

2 3 4 5 6 8 10 1

channel rate kB/s channel rate kB/s

PSNR in
low-res
window

PSNR in
high-res
window

128x128 tile
s; R

-D optimal sequencing

128x128 tiles; R-D optimal

sequencinguntiled; R-D optimal

sequencing

untiled; R-D optimal sequencing

6  
Figure 6.  Quality progression during multi-resolution browsing with a 640x480 focus window: 5 seconds at quarter resolution, 

followed by 10 seconds at full resolution. 

Tiled images are fully supported by JPEG2000 and JPIP, although the benefits of tiling clearly decrease if the tiles are 
not perfectly aligned with the region which is actually of interest, as demonstrated by Figure 4b.  It can also be argued 
that untiled images provide much more navigation context for the interactive user, at a relatively small cost.  To 
illustrate this point, Figure 5 shows the images recovered in response to the unaligned focus window request of Figure 
4b.  The tiled image is fully recovered with about 20% fewer received bytes than the untiled version, with identical 
quality in the focus window itself, but the untiled image provides cues regarding the surrounding regions. 

Finally, we note that tiled images are not well suited to the efficient communication of images at reduced resolutions.  
To illustrate this point, Figure 6 shows results obtained from a more realistic browsing session, in which the 2944x1966 
image is first accessed at quarter resolution (736x492) over a 640x480 focus window for a period of 5 seconds, and then 
at full resolution over a centered 640x480 focus window for a period of 10 seconds.  Evidently the performance within 
both resolutions is improved by avoiding tiles altogether, relying instead on JPIP�s precinct data-bins for spatial random 
access.  The fundamental problem with tiles is that the number of tiles is independent of the resolution at which the 
image is to be accessed.  As a results, tiles which start out with a reasonable size at the full image resolution can 
become very small at lower resolutions, where the efficiency of the compressed representation is correspondingly 
reduced7. 



7.2. Transport Efficiency and Responsiveness 

In this section, we briefly examine the efficiency and responsiveness of the JPIP protocol itself.  We do this by 
synthetically generating a consistent set of focus window changes at timed intervals, and monitoring the server�s 
response traffic.  All communication is throttled to a maximum rate of 4 kbytes/s and the focus window changes every 5 
seconds, through a sequence of resolution changes and diagonal panning into a losslessly compressed color image of 
size 13000x13000 (compressed size is 220 Mbytes; original uncompressed size is about 500 Mbytes).  Two different 
transports defined by the JPIP standard are considered in this experiment.  Using HTTP/1.1 as a transport, the only way 
to maintain responsiveness to new requests is for the client to constrain the server�s response length (max message body 
bytes) using JPIP�s len request field.  If the client does not do this, the server will tend to flood intermediate network 
buffers with its response to a request, preventing the client from receiving any response to a new focus window request 
in a timely fashion.  The client dynamically estimates the channel conditions (delay and bandwidth) and issues 
overlapping length-constrained requests so as to use all available bandwidth while maintaining responsiveness.  The 
client aims to keep response time within around 1 second by modulating the maximum response length identified via 
the len request field. 

The second transport is known to JPIP as �http-tcp.�  It employs HTTP to pose requests and receive response headers, 
but all JPIP stream messages are returned to the client on a separate TCP channel.  The client sends regular 
acknowledgement messages back to the server on this auxiliary TCP channel, allowing the server to estimate channel 
conditions (delay and bandwidth) and hence regulate the flow of its response data to maintain responsiveness.  The 
benefits of this are that the client sends fewer requests, the server sends fewer response headers, and the server�s 
packaging of response data into JPIP messages is not constrained by artificial byte lengths.  In our experiments, the 
server aims to keep response time around 1 second, the same value selected for the client-driven HTTP transport. 

Figure 7 (left) identifies the cumulative amount of response data received since the last change in focus window.  Since 
the focus window changes every 5 seconds, we see that both transports are indeed able to maintain a response time of 
roughly 1 second, albeit by very different means.  Figure 7 (right), however, clearly reveals the improvement in 
transport efficiency associated with the �http-tcp� transport.  The signaling overhead reported here accounts for the size 
of server response headers as well as JPIP message headers, both of which are larger on average with HTTP as the 
transport.  The figure plots cumulative signaling overhead, as a percentage of cumulative received data, since the last 
change in focus window, which explains the observed transitions roughly every 5 seconds.  Evidently, the average 
signaling overhead for JPIP need not be larger than about 15%. 

10%

5%

15%

20%

25%

30%

35%

50 10 15 20 2550 10 15 20 25

5 kB

10 kB

15 kB

20 kB

25 kB

secondsseconds

cumulative response bytes
since last change of window

JPIP signalling
overhead

 
Figure 7.  Responsiveness and signaling overhead of JPIP using two different transports: �http� � dashed line; and �http-tcp� � solid 

line. 

7.3. Usability Observations 

We have undertaken a performance trial of a JPIP client-server system8.  The server was hosted by a P4 2.4GHz 
machine with 1 Gbyte of 333 MHz memory and a 100Mbps network port.  Clients were located in capital cities around 
Australia via a corporate LAN.  The server was configured to limit the outgoing data rate to either 8, 4 or 2 kbytes/s for 
each client.  Over a 10 minute interval, about 20 clients on varying desktop PCs simultaneously and independently 
interrogated a satellite monochrome image measuring 84286×84286, whose original size was 6.6 Gbytes, losslessly 
compressed to 3.4 Gbytes.  Users reported satisfaction with the 8 kbytes/s service, and were accepting of the 4 and even 



the 2 kbyte/s services.  The average CPU usage on the server ranged from 5% to about 10%.  Network activity peaked 
at 140 kbytes/s, or about 1% of the port capacity.  Sustained disk access ranged from 1 Mbyte/s to 5 Mbyte/s (average 
about 3Mbyte/s).  Memory usage was fairly linear at 30 Mbyte per client.  Clearly, this type of machine could 
comfortably serve 30 clients before it was bounded by memory limits. 

The large per-client memory usage observed in this experiment is a consequence of the fact that the server�s cache 
model is currently implemented by allocating one 32-bit word for each precinct in the entire image, even though only a 
very small percentage of the precinct data-bins are ever accessed by any given client.  Future implementations will 
address this issue through the use of more efficient data structures for the sparse cache model.  It is worth mentioning, 
however, that JPIP servers are not obliged to maintain complete cache models.  A server could maintain a bounded list 
of region-based cache modeling structures, for example, discarding information about regions which have not been 
accessed for some time.  The only impact of such a resource constrained implementation would be that communication 
efficiency might be reduced for certain client access patterns.  One clear conclusion from these experimental 
observations is that the server is not CPU bound.  With more sophisticated memory structures for cache modeling, such 
a desktop machine could be expected to serve hundreds of clients. 

8. CONCLUSIONS 
This paper has described the philosophy and architecture of JPIP, together with the envisaged modes of operation and 
some preliminary performance observations.  One of the key principles behind the development of JPIP is that server 
responses be coupled as loosely as possible to client requests.  In fact, the server�s response to any request is a self-
describing JPIP stream, whose length and internal organization are at the discretion of the server.  JPIP has been 
designed to provide efficient data transfer, responsive performance, flexibility and effective random access for 
JPEG2000 data.  Its philosophy is consistent across all data types, including code-stream headers, compressed imagery 
data, and meta data.  This allows JPIP to provide interactive services for all members of the JPEG2000 family of files, 
including JP2, JPX, MJP, JPM and later JP3D.  Moreover, JPIP servers can be developed to efficiently meet the needs 
of a wide range of applications, from simple image browsing, to sophisticated multi-channel navigation of massive 
hyperspectral images overlayed with context-dependent meta data.  The intention of this paper has been to emphasize 
the fundamental principles behind the JPIP standard, while at the same time providing a useful introduction to its 
architecture, its basic syntactic elements, and some anticipated deployment paradigms.  JPIP is expected to play an 
important role in accelerating the adoption of JPEG2000 technology within a wide range of application domains, 
including medical, military, surveilance, mobile, and internet imaging. 

Acknowledgement 

Thanks to Michael Owen of DSTO for performing the usability trial. 

9. REFERENCES 
1. S. Deshpande and W. Zeng.  Scalable Streaming of JPEG2000 Images Using Hypertext Transfer Protocol.  Proc. ACM, 

MM, 372-281, 2001. 
2. D. Taubman and M. Marcellin.  JPEG2000: Image Compression Fundamentals, Standards and Practice.  Kluwer 

Academic Publishers, Boston, 2002. 
3. R. Prandolini, T. A. Au, A. K. Lui, M. J. Owen, and M. W. Grigg.  Use of UDP for efficient imagery dissemination.  Int. 

Symp. Visual Communications and Image Processing (VCIP), Perth, Australia.  June 2000. 
4. R. Prandolini.  Coding of surveillance imagery for interpretability using local dimension estimates.  Int. Symp. Visual 

Communications and Image Processing (VCIP), Perth, Australia.  June 2000. 
5. A. Nguyen, V. Chandran, S. Sridharan, and R. Prandolini.  Importance Assignment to Regions in Surveillance Imagery to 

Aid Visual Examination and Interpretation of Compressed Images.  Int. Symp. Intelligent Multimedia, Video & Speech 
Processing, Hong Kong.  May 2001. 

6. D. Taubman.  Rate-distortion optimized interactive browsing of JPEG2000 images.  Proc. IEEE Int. Conf. Image 
Processing (ICIP), to appear.  September 2003. 

7. D. Taubman.  Remote browsing of JPEG2000 images.  Proc. IEEE Int. Conf. Image Processing (ICIP).  1:229-232, 
September 2002. 

8. D. Taubman.  Proposal and Implementation of JPIP (Jpeg2000 Internet Protocol) in Kakadu V3.3.  via 
http://www.kakadusoftware.com.  August 2002. 

 

http://www.kakadusoftware.com/

